Imaging Corrosion under Insulation and under Fireproofing, using MR-MWM-Arrays

Neil Goldfine, Brian Manning, Zachary Thomas, Yanko Sheiretov, Scott Denenberg, Todd Dunford, and Shayan Haque JENTEK Sensors, Inc., 110-1 Clematis Avenue, Waltham, MA 02453-7013

Rasheed Al Rushaid, Frederick Haught Al Rushaid Technologies Co., Al Turki Business Park, Office Villa #4; 7244 King Saud Road, Ad Doha Al Janubiyah, Dhahran 34455, Kingdom of Saudi Arabia

Copyright © 2015 JENTEK Sensors Slide 1 All Rights Reserved.

Outline

- MWM-Array Technology Overview
- Detection and Characterization of Corrosion Under Insulation
 - Problem Definition
 - Sensor Selection
 - 3-Unknown Lattices
- Performance Evaluation Results
- Next Generation Technology for Corrosion Imaging Tool
 - System Configurations
 - Performance Capability
- Case Studies of Field Service Support
- Ongoing Efforts

Copyright © 2015 JENTEK Sensors Slide 2 All Rights Reserved.

Technology Overview

1. Sensors: MWM[®]-Arrays

 Paradigm shift in sensor design (first priority is predictable response based on physicsbased modeling)

Images

- **3. GridStation Software using Hyperlattices**[®]
- Rapid, autonomous data analysis Performs multivariate inverse method (MIM) using precomputed databases
 - Defect Images
 - **Performance Diagnostics** •
 - Noise Suppression

Thickness

Lift-Off

2. Next Generation Electronics

- 10x signal-to-noise improvement
- Very low frequencies (deep penetration)
- Crack detection through up to 0.5 inches of material
- Reduced drift

Analysis MWM sensor

Solve Multiple Unknown Problems MIM

10.00 Hz - Imaginary vs. Real (multiple grids) kness File Grid, 10.00 Hz, Conductivity = 10.000 %IACS, Permeability = 40.000 rel, n kness File Grid, 10.00 Hz, Conductivity = 10.000 %IACS, Permeability = 100.00 rel, n kness, File Grid, 10.01 Hz, Conductivity = 110.000 %IACS, Permeability = 200.00 rel, n

Detection & Characterization of CUI Problem Definition

Sensor Selection

- Decay rate determined by skin depth at high frequency and sensor dimensions at low frequency
- Large dimensions needed for thick coatings/insulation
- Low frequencies needed to penetrate through steel pipe wall

Technology Description: 3-Unknown Lattices

Lab Demonstration of ID/OD Discrimination

Internal Wall Loss

External Wall Loss

Performance Evaluation of Corrosion Imaging System

Results comparison with known natural corrosion defects on the OD (CUI)

Axial Length (inches/mm)	Circumferential Length (inches/mm)	Mean Depth (inches/mm)	Hit/Miss
1.5/38	1.50/38	0.12/3.0	Hit
9.0/228	1.50/38	0.06/1.5	Miss
2.0/50	1.50/38	0.08/2.0	Miss
4.0/101	1.25/32	0.12/3.0	Hit
4.0/101	4.00/101	0.08/2.0	Hit*
4.0/101	4.50/114	0.08/2.0	Hit*
1.75/44	2.75/70	0.10/2.5	Hit
2.75/69	2.50/63	0.12/3.0	Hit
1.0/25	0.75/19	0.16/4.0	Miss

*The defect produced two distinct indications in the scan data that were responsible for the indications were identified on a best-effort basis.

Performance Evaluation Results (December 2013)

External Corrosion – Sample B

Pipe Data:

20" Diameter, 0.250" wall2" insulation with aluminum weather jacket

Flaw Data:

2.75" (Axial), 2.50" (Circumferential), 0.12 Deep (48%)

Performance Evaluation Results (July 2013)

Internal Corrosion – Sample A

16" Schedule 80 (0.500" wall)2" insulation with aluminum weather jacket0.100" max wall loss (20%) over 20-25 inches (full circumference)

Internal Corrosion – Sample B

- 16" Schedule 80 (0.500" wall)
- 2" insulation with aluminum weather jacket
- 0.175" max wall loss (35%) over 20-25 inches (full circumference)

Solution: Corrosion Imaging System

Non-Integrated System

Integrated System

- Longer, light-weight cables for increased operator ease-of-use
- More compact cable/PEU configuration
- Improved positioning encoder module

Corrosion Imaging Tool – Current Capability (1)

System capabilities:

- Carbon steel pipelines and piping (straight sections only) for a minimum of 8.5 inch total diameter (including insulation) and above
- Up to 0.5 inch thick pipe walls for internal and external corrosion imaging
- Up to 0.040 inch Aluminum and Stainless Steel weather jackets (not suitable for galvanized weather jackets)
- All (non-conducting) insulation materials, up to 3 inch thick
- Current focus is on pipelines, piping and vessels.
 Can be adapted for other steel structures

Areas of corrosion with dimensions exceeding the following numbers will have a high probability for detection:

- 1 in. diameter @ 65% wall loss (average)
- 2 in. diameter @ 50% wall loss (average)
- 3 in. diameter @ 30% wall loss (average)

Note: This evaluation was performed on 20 in. pipes with natural corrosion, 0.250 in. wall, 2 in. insulation, and 0.020 in. aluminum weather jacket. The system performance is expected to vary with different pipe configurations.

Case Study I - Corrosion Imaging on Refinery Piping

Inspection was performed with the pipe in production at high temperature

Case Study I - Corrosion Imaging on Refinery Piping

Multiple Unknowns Meas. Steel Thickness Scans

Inspection was performed with the pipe in production at high temperature

Case Study II - Corrosion Imaging on Refinery Piping

- Engineers provided service support to field service technicians performing inspection for internal and external corrosion on a pipe at a major U.S. refinery.
- Technicians are using system with magnetoresistive array sensing technology capable of imaging corrosion in weather jacketed pipe.

Ongoing CUI Efforts

- Transitioning of the technology for field services
- Comprehensive training and service support program developed for approved NDT service providers
- Several field service technicians have undergone coursework and training and are currently performing field services
- Software and hardware enhancements are ongoing to improve system capabilities
- Related applications:
 - Corrosion under composite repair using both magnetoresistive and inductive sensing elements
 - CUF enhancements
 - Subsea corrosion under weight-coat
 - New sensor development for thicker pipe wall

